Типовой по математике примеры решения задач курсового задания

Площадь в полярных координатах

Пример. Найти площадь петли декартова листа .  Подпись:  

                   Рис.3.5
             

Решение. Перейдем к полярным координатам по обычным фор­мулам   , .Тогда заданное уравнение перепишется в виде,или

01 12
. Из этого уравнения вытекает, во-первых, что  при  и при  и, во-вторых,  при и . Последнее означает, что декартов лист имеет асимптоту, уравнение которой  можно найти обычным обра­зом в декартовых координатах.Следовательно, петля декартова ли­ста описывается при изменении   от 0 до  и лежит в первой четверти (рис.3.5).Таким образом, искомая площадь равна . Пользуясь симметрией кривой от­носительно биссектрисы , т, е. относительно луча , мы можем вычислить площадь половины петли (от  до ) и затем удвоить ее. Это позволит воспользоваться  заменой 
  01
 , ,  что дает. Новая замена, приводит к интегралу. ЛИТЕРАТУРА ОСНОВНАЯ 1. Зорич В.А. Математический анализ.Учебник .Ч.II М.: Наука,1984. 640с. 2. Камынин Л.И. Курс математического анализа.Т.II. Учебник. М.: Изд во МГУ, 1995. 624с. 3. Ильин В.А., Садовничий В.А., Сендов Бл.Х. Математический анализ. Продолжение курса. Под ред. А.Н.Тихонова. М.: Изд-во МГУ, 1987. 358 с. 4. Кудрявцев Л.Д. Курс математического анализа ( в двух томах). М.: Высшая школа,1981. т. I ;т.II - 584 с.
Физические приложения криволинейных интегралов