Типовой расчет по математике Поверхностные интегралы Тройные интегралы в декартовых координатах Тройные интегралы в цилиндрических координатах Вычисление объема тела Вычисление длин дуг

Типовой по математике примеры решения задач курсового задания

Тройные интегралы в цилиндрических координатах

Пример Вычислить интеграл, используя цилиндрические координаты: Область U ограничена параболоидом z = 4 − x2y2, цилиндром x2 + y2 = 4 и плоскостями y = 0, z = 0 (рисунок 8).

Рис.8
Рис.9
Решение. Изобразив схематически область интегрирования U, находим, что ее проекция на плоскость Oxy (область D) представляет собой полукруг радиусом ρ = 2 (рисунок 9). Перейдем к цилиндрическим координатам, применяя подстановки Новые переменные будут изменяться в пределах Теперь вычисляем интеграл:
Дополнительная литература 1. Березин И.С., Жидков Н.П. Методы вычислений. - Т.1. - М.: Наука, 1966; - Т.2. - М.: Физматгиз, 1962. 2. Демидович Б.П., Марон И.А., Шувалова Э.З. Численные методы анализа. - М: Наука, 1967. 3. Калиткин Н.Н., Численные методы. - М.: Наука, 1978. 4. Курош А.Г. Курс высшей алгебры. - М.: Наука, 1968. 5. Самарский А.А., Гулин А.В. Численные методы. - М: Наука, 1989. 6. Фаддеев Д.К., Фаддеева В.Н. Вычислительные методы линейной алгебры. - М: Физматгиз, 1963.
Тройные интегралы в сферических координатах