Типовой расчет по математике Поверхностные интегралы Тройные интегралы в декартовых координатах Тройные интегралы в цилиндрических координатах Вычисление объема тела Вычисление длин дуг

Типовой по математике примеры решения задач курсового задания

Тройные интегралы в сферических координатах

Сферическими координатами точки M(x,y,z) называются три числа − ρ, φ, θ , где

ρ − длина радиуса-вектора точки M; φ − угол, образованный проекцией радиуса-вектора на плоскость Oxy и осью Ox; θ − угол отклонения радиуса-вектора от положительного направления оси Oz (рисунок 1).
Рис.1
Обратите внимание, что определения ρ, φ в сферических и цилиндрических координатах отличаются друг от друга. Сферические координаты точки связаны с ее декартовыми координатами соотношениями Якобиан перехода от декартовых координат к сферическим имеет вид: Раскладывая определитель по второму столбцу, получаем Соответственно, абсолютное значение якобиана равно Следовательно, формула замены переменных при преобразовании декартовых координат в сферические имеет вид: Тройной интеграл удобнее вычислять в сферических координатах, когда область интегрирования U представляет собой шар (или некоторую его часть) и/или когда подынтегральное выражение имеет вид f (x2 + y2 + z2). Иногда выгодно использовать т.н. обощенные сферические координаты, связанные с декартовыми формулами В этом случае якобиан равен
6. Райков Д.А. Одномерный математический анализ. М.: Высшая школа, 1982. 7. Зорич В.А. Математический анализ. М.: Наука,1982, ч.1. 8. Будак О.М. ,Фомин С.В. Кратные интегралы и ряды. М.: Наука, 1967. 608 с. 9. Кудрявцев Л.Д., Кутасов А.Д., Чехлов В.И., Шабунин М.И. Сборник задач по математическому анализу. Интегралы. Ряды. М.: Наука,1986. 10. Кудрявцев Л.Д., Кутасов А.Д., Чехлов В.И., Шабунин М.И. Сборник задач по математическому анализу. Функции нескольких переменных. М.: Наука,1995.
Тройные интегралы в сферических координатах