Типовой расчет по математике Поверхностные интегралы Тройные интегралы в декартовых координатах Тройные интегралы в цилиндрических координатах Вычисление объема тела Вычисление длин дуг

Типовой по математике примеры решения задач курсового задания

Тройные интегралы в сферических координатах

Пример Вычислить интеграл xyzdxdydz, где область U представляет собой часть шара x2 + y2 + z2R2, расположенную в первом октанте x ≥ 0, y ≥ 0, z ≥ 0.

Решение. Перейдем к сферическим координатам. Сделаем замену переменных: Новые переменные будут изменяться в пределах: Тогда интеграл в сферических координатах равен

Основные методы интегрирования.

Способ подстановки (замены переменных).

  Теорема: Если требуется найти интеграл , но сложно отыскать первообразную, то с помощью замены x = j(t) и dx = j¢(t)dt получается:

 Доказательство: Продифференцируем предлагаемое равенство:

По рассмотренному выше свойству №2 неопределенного интеграла:

f(x)dx = f[j(t)]j¢(t)dt

что с учетом введенных обозначений и является исходным предположением. Теорема доказана

6. Райков Д.А. Одномерный математический анализ. М.: Высшая школа, 1982. 7. Зорич В.А. Математический анализ. М.: Наука,1982, ч.1. 8. Будак О.М. ,Фомин С.В. Кратные интегралы и ряды. М.: Наука, 1967. 608 с. 9. Кудрявцев Л.Д., Кутасов А.Д., Чехлов В.И., Шабунин М.И. Сборник задач по математическому анализу. Интегралы. Ряды. М.: Наука,1986. 10. Кудрявцев Л.Д., Кутасов А.Д., Чехлов В.И., Шабунин М.И. Сборник задач по математическому анализу. Функции нескольких переменных. М.: Наука,1995.
Тройные интегралы в сферических координатах