Типовой расчет по математике Производная показательной и логарифмической функции Производная степенной функции Исследование функций с помощью производных Дифференцирование и интегрирование степенных рядов

Типовой по математике примеры решения задач курсового задания

В данном разделе мы рассмотрим 8 специальных классов интегралов от тригонометрических функций. Для каждого класса применяются определенные преобразования и подстановки, позволяющие получить аналитическое решение.

1. Интегралы вида Для решения данных интегралов применяются формулы преобразования произведения тригонометрические функций в сумму или разность: 2. Интегралы вида Здесь и везде ниже предполагается, что m и n - натуральные числа. Для вычисления таких интегралов используются следующие подстановки и преобразования:
  1. Если степень косинуса n - нечетная (при этом степень синуса m может быть любой), то используется подстановка .
  2. Если степень синуса m - нечетная, то используется подстановка .
  3. Если степени m и n - четные, то сначала применяются формулы двойного угла чтобы понизить синуса или косинуса в подынтегральном выражении. Затем, если необходимо, применяются правила a) или b).
3. Интегралы вида Степень подынтегрального выражения в данном интеграле можно понизить с помошью тригонометрического соотношения и формулы редукции 4. Интегралы вида Здесь степень подынтегрального выражения понижается с помошью соотношения и формулы редукции 5. Интегралы вида Данный тип интеграла упрощается с помощью следующей формулы редукции: 6. Интегралы вида Аналогично предыдущим пунктам, интеграл упрощается с помощью формулы 7. Интегралы вида
  1. Если степень секанса n - четная, то c помошью соотношения секанс выражается через тангенс. При этом множитель отделяется и используется для преобразования дифференциала. В результате весь интеграл (включая дифференциал) выражается через функцию tg x.
  2. Если обе степени n и m - нечетные, то отделяется множитель sec x tg x, необходимый для преобразования дифференциала. Далее весь интеграл выражается через sec x.
  3. Если степень секанса n - нечетная, а степень тангенса m - четная, то тангенс выражается через секанс с помощью формулы . Затем вычисляются интегралы от секанса.
8. Интегралы вида
  1. Если степень косеканса n - четная, то c помошью соотношения косеканс выражается через котангенс. При этом множитель отделяется и используется для преобразования дифференциала. В результате подынтегральная функция и дифференциал выражаются через ctg x.
  2. Если обе степени n и m - нечетные, то отделяется множитель ctg x cosec x, необходимый для преобразования дифференциала. Далее интеграл выражается через cosec x.
  3. Если степень косеканса n - нечетная, а степень котангенса m - четная, то котангенс выражается через косеканс с помощью формулы . Далее вычисляются интегралы от косеканса.

Непрерывность

1)     В-функция

- сходящийся

 - "

 - "

по теореме Вейерштрасса В-функция непрерывна.

Дифференцируемость В-функций

- равномерно сходящийся по параметру

В-функция бесконечное число раз дифференцируема, при этом операцию дифференцирования можно вносить под знак интеграла.

Задача вычисления скорости прямолинейного движения точки

дополнительная литература

1. Кудрявцев В.А., Демидович Б.П. Краткий курс высшей математики: Учебник. - М.: Гос.Изд.физ-мат.литература,1983. 2. Математика в экономике: учебно-методическое пособие. Под ред. Н.Ш Кремера. - М.: Финстатинформ, 1999. 3. Математический анализ для экономистов (под редакцией Гриба А.А. и Тарасюка А.Ф.) - М.: ФИЛИН, 2000. 4. Солодовников А.С., Бабайцев В.А., Бранков А.В. Математика в экономика. - М.: Финансы и статистика, 1998. 5. Бугров Я.С., Никольский С.М. Элементы линейной алгебры и аналитической геометрии. - М.: Наука, 1984. 6. Бугров Я.С. , Никольский С.М. Дифференциальное и интегральное исчисление. - М.: Наука, 1980. 7. Бугров Я.С. Никольский С.М. Высшая математика: Задачник. - М.: Наука, 1982. 8. Кузнецов Л.А. Сборник задач по высшей математике (типовые расчеты). - М.: Высшая школа, 1983.