Типовой расчет по математике Производная показательной и логарифмической функции Производная степенной функции Исследование функций с помощью производных Дифференцирование и интегрирование степенных рядов

Типовой по математике примеры решения задач курсового задания

Криволинейные интегралы первого рода

Пример Вычислить интеграл , где кривая C задана параметрически в виде .

Решение. Применяя формулу можно записать

Пример Вычислить криволинейный интеграл , где кривая C − отрезок прямой от точки (0,−2) до (4,0) (рисунок 5).

Решение. Найдем уравнение отрезка AB. По формуле находим данный интеграл
Рис.5
Рис.6

3) Пусть функция -непрерывна на , пусть известно, что

 непрерывна, то в этом случае - дифференцируема, при этом

 

Доказательство:

Введем  новую функцию

* непрерывна по теор.  к ней можно применить 2-ю теорему: 

 

Задача вычисления скорости прямолинейного движения точки
Рекомендуемая литература. а) основная литература: 1. Степанов В.В. Курс дифференциальных уравнений. - М. Наука, 1966. 2. Понтрягин Л.С. Обыкновенные дифференциальные уравнения. - М. Наука, 1982. 3. Эльсгольц Л.Э. Дифференциальные уравнения и вариационное исчисление. - М. Наука, 1969. 4. Петровский И.Г. Лекции по теории обыкновенных дифференциальных уравнений. - М. Наука, 1984. 5. Тихонов А.Н., Васильева А.Б., Свешников А.Г. Дифференциальные уравнения. - М. Физматлит, 1995. 6. Филиппов А.Ф. Сборник задач по дифференциальным уравнениям. - М. Наука, 1992; - М. Интеграл-пресс, 1998. 7. Розенблюм А.А. Интегрирование дифференциальных уравнений операторным методом. Методическое пособие. - Горький. ГГУ, 1980. 8. Петровский И.Г., Лекции по теории интегральных уравнений. - М.: Гостехиздат, 1951.