Типовой расчет по математике Производная показательной и логарифмической функции Производная степенной функции Исследование функций с помощью производных Дифференцирование и интегрирование степенных рядов

Типовой по математике примеры решения задач курсового задания

Криволинейные интегралы второго рода

Пример Вычислить интеграл , где кривая C задана параметрически в виде .

Решение. Используя формулу находим ответ:

Пример Найти интеграл вдоль кривой C, заданной уравнением , от точки (0,0) до (2,8).

Решение. Для вычисления данного криволинейного интеграла воспользуемся формулой Подставляя и в подынтегральное выражение, получаем

Опр: стационарной точки. Если функция дифференцируема в точке M0 то необходимым условием существования экстремума в этой точке является требование ее стационарности: 

( , если  )

Стационарная точка – точка где все частные производные по всем аргументам равны 0.

Д-во: Зафиксируем все переменные оставив только x1 

фиксируя любую другую переменную получаем тоже самое.

Задача вычисления скорости прямолинейного движения точки
Рекомендуемая литература. а) основная литература: 1. Степанов В.В. Курс дифференциальных уравнений. - М. Наука, 1966. 2. Понтрягин Л.С. Обыкновенные дифференциальные уравнения. - М. Наука, 1982. 3. Эльсгольц Л.Э. Дифференциальные уравнения и вариационное исчисление. - М. Наука, 1969. 4. Петровский И.Г. Лекции по теории обыкновенных дифференциальных уравнений. - М. Наука, 1984. 5. Тихонов А.Н., Васильева А.Б., Свешников А.Г. Дифференциальные уравнения. - М. Физматлит, 1995. 6. Филиппов А.Ф. Сборник задач по дифференциальным уравнениям. - М. Наука, 1992; - М. Интеграл-пресс, 1998. 7. Розенблюм А.А. Интегрирование дифференциальных уравнений операторным методом. Методическое пособие. - Горький. ГГУ, 1980. 8. Петровский И.Г., Лекции по теории интегральных уравнений. - М.: Гостехиздат, 1951.