Типовой расчет по математике Производная показательной и логарифмической функции Производная степенной функции Исследование функций с помощью производных Дифференцирование и интегрирование степенных рядов

Типовой по математике примеры решения задач курсового задания

Физические приложения криволинейных интегралов

С помощью криволинейных интегралов вычисляются

Рассмотрим эти приложения более подробно с примерами. Масса кривой Предположим, что кусок проволоки описывается некоторой пространственной кривой C. Пусть масса распределена вдоль этой кривой с плотностью ρ (x,y,z). Тогда общая масса кривой выражается через криволинейный интеграл первого рода Если кривая C задана в параметрическом виде с помощью векторной функции , то ее масса описывается формулой В случае плоской кривой, заданной в плоскости Oxy, масса определяется как или в параметрической форме Центр масс и моменты инерции кривой Пусть снова кусок проволоки описывается некоторой кривой C, а распределение массы вдоль кривой задано непрерывной функцией плотности ρ (x,y,z). Тогда координаты центра масс кривой определяются формулами где − так называемые моменты первого порядка. Моменты инерции относительно осей Ox, Oy и Oz определяются формулами

 

 

 

 

Набла – оператор Гамельтона

 

 

 


2.                                                        Нет никаких источников из токов завихренности.

 

 

 

 


2.                                                                                                                          Оператор Лапласа.

 

 

 

Если векторное поле можно представить в виде grad u, то поле называется потенциальным.

 

Задача вычисления скорости прямолинейного движения точки
Справочники, словари, энциклопедии 1. Математическая энциклопедия (в 5 томах). М.: Изд-во "Советская энциклопедия", 1977-1985. 2. Корн Г.А., Корн Т.М. Справочник по математике для научных работников и инженеров. М.: "Наука". 1978.