Типовой расчет по математике Поверхностные интегралы Тройные интегралы в декартовых координатах Тройные интегралы в цилиндрических координатах Вычисление объема тела Вычисление длин дуг

Типовой по математике примеры решения задач курсового задания

Физические приложения поверхностных интегралов

Пример Найти массу параболической оболочки, заданной уравнением и имеющей плотность .

Решение. Воспользуемся формулой Проекция D(x,y) параболической поверхности S на плоскость xy представляет собой круг радиусом 1 с центром в начале координат. Следовательно, можно записать Переходя в подынтегральном выражении к полярным координатам, получаем Сделаем подстановку . Тогда . Здесь u = 1 при r = 0, и при r = 1. Следовательно, интеграл равен

Заменяя в этой формуле S(x) её выражением, окончательно получим

или в более удобной форме

  (А)

Пределы внутреннего интеграла переменные; они указывают границы изменения переменной интегрирования у при постоянном значении второго аргумента х. Пределы внешнего интеграла постоянны; они указывают границы, в которых может изменяться аргумент х.

Меняя роли х и у, т. е. рассматривая сечения тела плоскостями y=const , мы найдем сначала, что площадь Q(у) такого сечения равна , где у при интегрировании считается величиной постоянной. Интегрируя затем Q(у) в пределах измене­ния у, т. е. от c до d, мы придем ко второму выражению для двойного интеграла

  (Б)

 Здесь интегрирование совершается сначала по х, а потом по у.

Тройные интегралы в сферических координатах
Литература 1. Гильмуллин, М.Ф. История математики / М.Ф. Гильмуллин. - Елабуга: Изд-во ЕГПУ, 2009. - 212 с. 2. Гиндикин, С.Г. Рассказы о физиках и математиках / С.Г. Гиндикин. - М.: Изд-во МЦНМО, 2006. - 464 с. 3. Дорофеева, А.В. Страницы истории на уроках математики / А.В. Дорофеева. - М.: Просвещение, 2007. - 96 с. 4. Колягин, Ю.М. Русская школа и математическое образование: Наша гордость и наша боль / Ю.М. Колягин. - М.: Просвещение, 2001. - 318 с.