Типовой расчет по математике Поверхностные интегралы Тройные интегралы в декартовых координатах Тройные интегралы в цилиндрических координатах Вычисление объема тела Вычисление длин дуг

Типовой по математике примеры решения задач курсового задания

Физические приложения тройных интегралов

Пример Определить массу и координаты центра тяжести единичного куба с плотностью ρ(x,y,z) = x + 2y + 3z (рисунок 2).

Решение. Сначала вычислим массу куба: Теперь вычислим статические моменты Mxy, Mxz, Myz. Аналогично находим моменты Mxz и Myz: Вычисляем координаты центра тяжести куба:

 Пример.

  Пример.

 

  Пример.

Область D заключим внутрь прямоугольника

 

стороны которого касаются границы области в точках А, В, С, Е. Интервал [а, b] является ортогональной проекцией области D на ось Ох, а интервал [c, d] - ортогональной проекцией облас­ти D на ось Oy. На рис.5 область D показана в плоско­сти Оху.

Точками A и C граница разбивается на две линии: ABC и AEC, каждая из которых пересекается с любой прямой, параллельной оси Oy, в одной точке. Поэтому, их уравнения можно записать в форме, разрешенной относительно y:

  (ABC),

 (AEC).

Аналогично точками В и Е граница разбивается на линии ВАЕ и ВСЕ, уравнения которых можно записать так:

 (BAE),

  (BCE).

 

 Рис.5

Литература 1. Метельский, Н.В. Очерки по истории методики математики / Н.В. Метельский. - Минск, 1968. - 340 с. 2. Полякова, Т.С. История математического образования в России / Т.С. Полякова. - М.: Изд-во МГУ, 2002. - 624 с. 3. Хрестоматия по истории математики. Арифметика и алгебра. Теория чисел. Геометрия / Под ред. А.П. Юшкевича - М.: Просвещение, 1976. - 318 с. 4. Хрестоматия по истории математики. Математический анализ. Теория вероятностей / Под ред. А.П. Юшкевича - М.: Просвещение, 1977. - 224 с. 5. Черкасов, Р.С. История отечественного школьного математического образования / Р.С. Черкасов // Математика в школе. - 1997. - № 2-4. 6. Шеретов, В.Г. Российской математике - триста лет: историко-математические очерки / В.Г. Шеретов, С.Ю. Щербакова. - Тверь: Фактор, 2003. - 84 с.
Тройные интегралы в сферических координатах