Типовой расчет по математике Поверхностные интегралы Тройные интегралы в декартовых координатах Тройные интегралы в цилиндрических координатах Вычисление объема тела Вычисление длин дуг

Типовой по математике примеры решения задач курсового задания

Поверхностные интегралы первого рода

Пример Вычислить интеграл , где S представляет собой полную поверхность конуса .

Решение. Обозначим через S1 боковую поверхность конуса, и через S2 − его основание. Запишем данный интеграл в виде суммы двух интегралов Найдем сначала первый интеграл I1, используя формулу Частные производные здесь равны Тогда Поскольку z = 2 для основания конуса, то область интегрирования D (x,y) определяется неравенством z2 + y2 ≤ 4 (рисунок 3). Следовательно, интеграл I1 записывается в виде Его легко вычислить в полярных координатах: Рассмотрим теперь второй интеграл I2. Уравнение основания конуса имеет вид z = 2. Поэтому, где равно площади основания . Тогда Таким образом, полное значение поверхностного интеграла равно
Рис.3
Рис.4
СПИСОК ЛИТЕРАТУРЫ. 1. Ю.Н.Макарычев, Н.Г.Миндюк, К.И.Нешков "АЛГЕБРА. Учебник для 9 класса с углублённым изучением математики" Москва 2006 год, 5-е издание - М.:Мнемозина, 439 страниц, иллюстрации. 2. М.Л.Галицкий, А.М.Гольдман, Л.И.Звавич "Сборник задач по алгебре 8-9 классы" Москва "Просвещение" 1994 год, 271 страница.
Тройные интегралы в сферических координатах