Типовой расчет по математике Поверхностные интегралы Тройные интегралы в декартовых координатах Тройные интегралы в цилиндрических координатах Вычисление объема тела Вычисление длин дуг

Типовой по математике примеры решения задач курсового задания

Поверхностные интегралы первого рода

Пример Вычислить интеграл . Поверхность S задана параметрически в виде .

Решение. Найдем частные производные и их векторное произведение: Тогда элемент площади равен Теперь несложно вычислить заданный поверхностный интеграл:

 Пример.

Видно, что в результате повторного применения интегрирования по частям функцию не удалось упростить к табличному виду. Однако, последний полученный интеграл ничем не отличается от исходного. Поэтому перенесем его в левую часть равенства.

  Таким образом, интеграл найден вообще без применения таблиц интегралов.

  Прежде чем рассмотреть подробно методы интегрирования различных классов функций, приведем еще несколько примеров нахождения неопределенных интегралов приведением их к табличным.

Замечание 2. Если в области D функция меняет знак, то разбиваем область на две части: 1) область D1 где  2) область D2 ,где . Предположим, что области D1 и D2 таковы, что двойные интегралы по этим обла­стям существуют. Тогда интеграл по области D1 будет положи­телен и будет равен объему тела, лежащего выше плоскости Оху. Интеграл по D2 будет отрицателен и по абсолютной величине равен объему тела, лежащего ниже плоскости Оху, Следовательно, интеграл по D будет выражать раз­ность соответствующих объемов.

Вычисление площади плоской области.

 Если мы со­ставим интегральную сумму для функции  по области D, то эта сумма будет равна площа­ди S,

при любом способе разбиения. Пере­ходя к пределу в правой части равен­ства, получим

Если область D правильная , то площадь выразится двукратным интегралом

Производя интегрирование в скобках, имеем, очевидно,

Пример 2. Вычислить площадь области, ограниченной кривыми

 

  Рис.19

Решение. Определим точки пересечения данных кривых (Рис.19). В точке пересечения ординаты равны, т.е. , отсюда Мы получили две точки пересечения

Следовательно, искомая площадь

СПИСОК ЛИТЕРАТУРЫ. 1. Ю.Н.Макарычев, Н.Г.Миндюк, К.И.Нешков "АЛГЕБРА. Учебник для 9 класса с углублённым изучением математики" Москва 2006 год, 5-е издание - М.:Мнемозина, 439 страниц, иллюстрации. 2. М.Л.Галицкий, А.М.Гольдман, Л.И.Звавич "Сборник задач по алгебре 8-9 классы" Москва "Просвещение" 1994 год, 271 страница.
Тройные интегралы в сферических координатах