Типовой расчет по математике Поверхностные интегралы Тройные интегралы в декартовых координатах Тройные интегралы в цилиндрических координатах Вычисление объема тела Вычисление длин дуг

Типовой по математике примеры решения задач курсового задания

Поверхностные интегралы второго рода

Если поверхность S задана явно в виде уравнения z = z(x,y), где z(x,y) − дифференцируемая функция в области D(x,y), то поверхностный интеграл второго рода от векторного поля по поверхности S записывается в одной из следующих форм:

Поверхностный интеграл второго рода можно записать также в координатной форме. Пусть P (x,y,z), Q (x,y,z), R (x,y,z) являются компонентами векторного поля . Введем cos α, cos β, cos γ − направляющие косинусы внешней нормали к поверхности S. Тогда скалярное произведение равно Следовательно, поверхностный интеграл можно записать в виде Поскольку (рисунок 1), и, аналогично, , получаем следующую формулу для вычисления поверхностного интеграла II рода: Если поверхность S задана в параметрической форме с помощью вектора , то последняя формула принимает вид где (u,v) изменяются в пределах области интегрирования D(u,v).
Рис.1
Если поверхность S не представима в явном или параметрическом виде, то ее можно попробовать разбить на конечное число частей, каждая из которых представима в таком виде. В этом случае справедливо свойство аддитивности: поверхностный интеграл второго рода по поверхности S будет равен сумме интегралов по ее частям.
СПИСОК ЛИТЕРАТУРЫ. 1. Ю.Н.Макарычев, Н.Г.Миндюк, К.И.Нешков "АЛГЕБРА. Учебник для 9 класса с углублённым изучением математики" Москва 2006 год, 5-е издание - М.:Мнемозина, 439 страниц, иллюстрации. 2. М.Л.Галицкий, А.М.Гольдман, Л.И.Звавич "Сборник задач по алгебре 8-9 классы" Москва "Просвещение" 1994 год, 271 страница.
Тройные интегралы в сферических координатах