Типовой расчет по математике Поверхностные интегралы Тройные интегралы в декартовых координатах Тройные интегралы в цилиндрических координатах Вычисление объема тела Вычисление длин дуг

Типовой по математике примеры решения задач курсового задания

Тригонометрические и гиперболические подстановки

В данной секции мы рассмотрим вычисление интегралов вида , где R - рациональная функция x и квадратного корня . Предварительно преобразуем квадратичную функцию под знаком корня, выделив в ней полный квадрат:

Выполнив замену , мы получим один из следующих 3 интегралов в зависимости от значений коэффициентов a, b и с:
Каждый из этих трех интегралов вычисляется с помощью специальных тригонометрических или гиперболических подстановок. 1. Интегралы вида Тригонометрическая подстановка: 2. Интегралы вида Тригонометрическая подстановка: Гиперболическая подстановка: 3. Интегралы вида Тригонометрическая подстановка: Гиперболическая подстановка: Примечания:
Список основной литературы 1. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы: Учебное пособие: М.; Лаборатория Базовых Знаний, 2001. 2. Волков Е.А.Численные методы:Учебное пособие: М.;Наука, 2005. 3. Демидович Б.М., Марон И.А. Основы вычислительной математики. Учебное пособие: М., Лань, 2006. 4. Мастяева И.Н., Семенихина О.Н. Численные методы: Учебное пособие; М; МЭСИ, 2011. 5. Мастяева И.Н., Семенихина О.Н. Численные методы: Практикум; М; МЭСИ, 2011. 6. Турчак Л.И. Основы численных методов: Учебное пособие:М.; Наука, 2007.
Тройные интегралы в сферических координатах