Типовой расчет по математике Поверхностные интегралы Тройные интегралы в декартовых координатах Тройные интегралы в цилиндрических координатах Вычисление объема тела Вычисление длин дуг

Типовой по математике примеры решения задач курсового задания

Тригонометрические и гиперболические подстановки

Пример Вычислить интеграл .

Решение. Используем тригонометрическую подстановку x = a sec t, dx = a tg t sec tdt. Вычислим интеграл, применив соотношение . Поскольку то получаем интеграл, выраженный через исходную переменную x:

Пример Найти интеграл .

Решение. Предварительно преобразуем интеграл. Сделаем подстановку Теперь вычисляем интеграл:

 Пример:

Интегрирование рациональных функций. 

 Для того, чтобы проинтегрировать рациональную дробь необходимо разложить ее на элементарные дроби.

 Теорема: Если  - правильная рациональная дробь, знаменатель P(x) которой представлен в виде произведения линейных и квадратичных множителей (отметим, что любой многочлен с действительными коэффициентами может быть представлен в таком виде: P(x) = (x - a)a…(x - b)b(x2 + px + q)l…(x2 + rx + s)m ), то эта дробь может быть разложена на элементарные по следующей схеме:

где Ai, Bi, Mi, Ni, Ri, Si – некоторые постоянные величины.

 При интегрировании рациональных дробей прибегают к разложению исходной дроби на элементарные. Для нахождения величин Ai, Bi, Mi, Ni, Ri, Si применяют так называемый метод неопределенных коэффициентов, суть которого состоит в том, что для того, чтобы два многочлена были тождественно равны, необходимо и достаточно, чтобы были равны коэффициенты при одинаковых степенях х.

 Применение этого метода рассмотрим на конкретном примере.

Список основной литературы 1. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы: Учебное пособие: М.; Лаборатория Базовых Знаний, 2001. 2. Волков Е.А.Численные методы:Учебное пособие: М.;Наука, 2005. 3. Демидович Б.М., Марон И.А. Основы вычислительной математики. Учебное пособие: М., Лань, 2006. 4. Мастяева И.Н., Семенихина О.Н. Численные методы: Учебное пособие; М; МЭСИ, 2011. 5. Мастяева И.Н., Семенихина О.Н. Численные методы: Практикум; М; МЭСИ, 2011. 6. Турчак Л.И. Основы численных методов: Учебное пособие:М.; Наука, 2007.
Тройные интегралы в сферических координатах