Типовой расчет по математике Поверхностные интегралы Тройные интегралы в декартовых координатах Тройные интегралы в цилиндрических координатах Вычисление объема тела Вычисление длин дуг

Типовой по математике примеры решения задач курсового задания

Тройные интегралы в цилиндрических координатах

Пример Вычислить интеграл где область U ограничена поверхностями x2 + y2 = 3z, z = 3 (рисунок 4).

Рис.4
Рис.5
Решение. Область интегрирования изображена на рисунке 4. Для вычисления интеграла перейдем к цилиндрическим координатам: Дифференциал при этом равен Уравнение параболической поверхности принимает вид: Проекция области интегрирования U на плоскость Oxy представляет собой окружность x2 + y2 ≤ 9 радиусом ρ = 3 (рисунок 5). Координата ρ изменяется в пределах от 0 до 3, угол φ − от 0 до 2π, и координата z − от ρ/3 до 3. В результате интеграл будет равен

Дополнительная литература 1. Березин И.С., Жидков Н.П. Методы вычислений. - Т.1. - М.: Наука, 1966; - Т.2. - М.: Физматгиз, 1962. 2. Демидович Б.П., Марон И.А., Шувалова Э.З. Численные методы анализа. - М: Наука, 1967. 3. Калиткин Н.Н., Численные методы. - М.: Наука, 1978. 4. Курош А.Г. Курс высшей алгебры. - М.: Наука, 1968. 5. Самарский А.А., Гулин А.В. Численные методы. - М: Наука, 1989. 6. Фаддеев Д.К., Фаддеева В.Н. Вычислительные методы линейной алгебры. - М: Физматгиз, 1963.
Тройные интегралы в сферических координатах