Типовой расчет по математике Физические приложения криволинейных интегралов Вычисление площадей фигур при параметрическом задании границы Физические приложения поверхностных интегралов Теорема Стокса

Типовой по математике примеры решения задач курсового задания

Определение производной

Пример Найти производную функции .

Решение. Применяя определение производной, получаем Умножим числитель и знаменатель на . Заметим, что Тогда

Пример Найти производную функции y(x) = sin x.

Решение. Используя определение производной, получаем Применим тригонометрическое тождество Тогда Первый предел в данном выражении равен Поскольку , то для производной синуса получаем окончательное выражение:

 Вернемся теперь к интегралу от элементарной дроби вида IV в общем случае.

В полученном равенстве первый интеграл с помощью подстановки t = u2 + s приводится к табличному , а ко второму интегралу применяется рассмотренная выше рекуррентная формула.

 Несмотря на кажущуюся сложность интегрирования элементарной дроби вида IV, на практике его достаточно легко применять для дробей с небольшой степенью n, а универсальность и общность подхода делает возможным очень простую реализацию этого метода на ЭВМ.

Неопределенный интеграл.

Функция F(x) называется первообразной для функции f(x) на промежутке (a;b), если для всех xÎ(a;b) выполняется равенство F¢(x) = f(x).

Например, для функции x2 первообразной будет функция x3/3.

Если для F(x) установлено равенство dF(x) = f(x)dx, то F(x) ¾ первообразная для f(x), так как .

Рассмотрим две теоремы, которые называются теоремами об общем виде всех первообразных данной функции.

Теорема 1. Если F(x) – первообразная для f(x) на (a;b), то F(x) + C, где C – число, тоже первообразная для f(x) на (a;b).

Доказательство.

  (F + C)¢ = F¢ + C¢ = f + 0 =  f

По определению F + C ¾ первообразная для f.

Прежде чем рассмотреть теорему 2, докажем две вспомогательные теоремы.

Если функция g(x) постоянна на (a;b), то g¢(x) = 0.

Доказательство.

Так как g(x) = C, справедливы равенства: g¢(x) = C¢ = 0 (здесь, как и ниже, через C обозначено произвольно выбранное число).

Если g¢(x) = 0 при всех xÎ(a;b), то g(x) = C на (a;b).

Доказательство.

Пусть g¢(x) = 0 во всех точках (a;b). Зафиксируем точку x1Î(a;b). Тогда для любой точки xÎ(a;b) по формуле Лагранжа имеем

 g(x) – g(x1) = g¢(x)(x – x1)

Так как xÎ(x; x1), а точки x и x1 принадлежат промежутку (a;b), то g¢(x) = 0, откуда следует, что g(x) – g(x1)=0, то есть g(x) = g(x1)=const.

6. Райков Д.А. Одномерный математический анализ. М.: Высшая школа, 1982. 7. Зорич В.А. Математический анализ. М.: Наука,1982, ч.1. 8. Будак О.М. ,Фомин С.В. Кратные интегралы и ряды. М.: Наука, 1967. 608 с. 9. Кудрявцев Л.Д., Кутасов А.Д., Чехлов В.И., Шабунин М.И. Сборник задач по математическому анализу. Интегралы. Ряды. М.: Наука,1986. 10. Кудрявцев Л.Д., Кутасов А.Д., Чехлов В.И., Шабунин М.И. Сборник задач по математическому анализу. Функции нескольких переменных. М.: Наука,1995.
Интегрирование рациональных выражений тригонометрических функций