Типовой расчет по математике Физические приложения криволинейных интегралов Вычисление площадей фигур при параметрическом задании границы Физические приложения поверхностных интегралов Теорема Стокса

Типовой по математике примеры решения задач курсового задания

Производные гиперболических функций

Пример Вычислить производную функции .

Решение. Аналогично, применяя правило дифференцирования сложной функции, получаем

Пример Найти производную функции .

Решение. Интересно, что производные функций и одинаковы.

Пример Доказать равенство

Решение. Продифференцируем обе части выражения и упростим. Следовательно, исходное выражение верно (по крайней мере, с точностью до постоянного слагаемого).

 Пример.

Т.к.  (, то

Приводя к общему знаменателю и приравнивая соответствующие числители, получаем:

 

 

   

Итого:

Производная

Рассмотрим функцию y=f(x), непрерывную в некоторой окрестности точки x. Пусть Dx   приращение аргумента в точке x. Обозначим через Dy или Df приращение функции, равное f(x+Dx) – f(x). Отметим здесь, что функция непрерывна в точке x, если в этой точке бесконечно малому прира­щению аргу­мента Dx соответствует беско­нечно малое приращение функции Df.

Отношение Df /Dx, как видно из рисунка 1, равно тангенсу угла a, который составляет секущая MN кривой y = f(x) c положительным направлением горизонтальной оси координат.

Представим себе процесс, в котором величина Dx, неограниченно уменьшаясь, стремится к нулю. При этом точка N будет двигаться вдоль кривой y = f(x), приближаясь к точке M, а секущая MN будет вращаться около точки M так, что при очень малых величинах Dx её угол наклона a будет сколь угодно близок к углу j наклона касательной к кривой в точке x. Следует отметить, что все сказанное относится к случаю, когда график функции y = f(x) не имеет излома или разрыва в точке x, то есть в этой точке можно провести касательную к графику функции.

Отношение Dy / Dx или, что то же самое (f(x + Dx)  f(x)) / Dx, можно рассматривать при заданном x как функцию аргумента Dx. Эта функция не определена в точке Dx = 0. Однако её предел в этой точке может существовать.

Если существует предел отношения (f(x + Dx) – f(x)) / Dx в точке Dx = 0, то он называется производной функции y = f(x) в точке x и обозначается y¢ или f¢(x):

 .

Основная литература. 1. Шипачев В.С. Высшая математика.-М., Высшая школа, 2002. 2. Шипачев В.С. Сборник задач по высшей математике.-М., Высшая школа, 2006. 3. Минорский В. П. Сборник задач по высшей математике. - М.: Наука, 2002 4. Гмурман В. Е. Руководство к решению задач по теории вероятностей и математической статистике. - М., Высшая школа, 2002. 5. Гмурман В. Е. Теория вероятностей и математическая статистика. - М., Высшая школа, 2001. 6. Крупин В.Г., Туганбаев А.А. Теория вероятностей. - М., Факториал, 2006.
Интегрирование рациональных выражений тригонометрических функций