Типовой расчет по математике Физические приложения криволинейных интегралов Вычисление площадей фигур при параметрическом задании границы Физические приложения поверхностных интегралов Теорема Стокса

Типовой по математике примеры решения задач курсового задания

Производные тригонометрических функций

Пример Продифференцировать функцию .

Решение. Используем формулы для производной суммы функций и производной степенной функции. После подстановки производных и упрощения получаем: Поскольку , то окончательное выражение для производной имеет вид

Пример Вычислить производную функции .

Решение. Первый шаг очевиден: Так как то применяя правило производной для сложной функции, находим: Воспользовавшись для упрощения тригонометрическими формулами и , получаем ответ

Рассмотрим этот вопрос в общем виде. Пусть - любая функция двух переменных (не обязательно положительная), не­прерывная в некоторой области D, ограниченной замкнутой линией. Разобьем область D на частичные, как указано выше, выберем в каждой частичной области по произвольной точке  и составим сумму

  (*)

где  - значение функции в точке ; и , - площадь ча­стичной области.

Сумма (*) называется n-й интегральной суммой для функции в области D, соответствующей данному разбиению этой области на n частичных областей.

Определение. Двойным интегралом от функции  по области D называется предел, к которому стремится n-я интегральная сумма (*) при стремлении к нулю наибольшего диаметра частичных областей.

­Записывается это так:

Читается: «двойной интеграл от  на  по области D». Выражение , показывающее вид суммируемых слагаемых, называется подынтегральным выражением; функция назы­вается подынтегральной функцией,  - элементом площади, об­ласть D - областью интегрирования, наконец, переменные x и у на­зываются переменными интегрирования.

Для того, чтобы вычислить определенный интеграл от функции f(x) по промежутку [a;b], нужно найти какую-либо первообразную F(x) функции f(x) и подсчитать разность значений первообразной в точках b и a. Разность этих значений первообразной принято обозначать символом .

Приведем примеры вычисления определенных интегралов с помощью формулы Ньютона-Лейбница.

Примеры. 1. .

2. .

Сначала вычислим неопределенный интеграл от функции f(x) = xex. Используя метод интегрирования по частям, получаем: . В качестве первообразной функции f(x)  выберем функцию ex(x – 1) и применим формулу Ньютона-Лейбница:

I = ex(x – 1) = 1.

При вычислении определенных интегралов можно применять формулу замены переменной в определенном интеграле:

 .

Здесь a и b определяются, соответственно, из уравнений j(a) = a; j(b) = b, а функции f, j, j¢ должны быть непрерывны на соответствующих промежутках.

Основная литература. 1. Шипачев В.С. Высшая математика.-М., Высшая школа, 2002. 2. Шипачев В.С. Сборник задач по высшей математике.-М., Высшая школа, 2006. 3. Минорский В. П. Сборник задач по высшей математике. - М.: Наука, 2002 4. Гмурман В. Е. Руководство к решению задач по теории вероятностей и математической статистике. - М., Высшая школа, 2002. 5. Гмурман В. Е. Теория вероятностей и математическая статистика. - М., Высшая школа, 2001. 6. Крупин В.Г., Туганбаев А.А. Теория вероятностей. - М., Факториал, 2006.
Интегрирование рациональных выражений тригонометрических функций