Типовой расчет по математике Физические приложения криволинейных интегралов Вычисление площадей фигур при параметрическом задании границы Физические приложения поверхностных интегралов Теорема Стокса

Типовой по математике примеры решения задач курсового задания

Дифференцирование и интегрирование степенных рядов

Рассмотрим степенной ряд , имеющий радиус сходимости R > 0:

Функция является непрерывной функцией при |x| < R. Степенной ряд внутри интервала сходимости можно дифференцировать почленно. При этом производная степенного ряда выражается формулой Степенной ряд можно также почленно интегрировать на отрезке, который расположен внутри интервала сходимости. Следовательно, если − R < b < x < R, то выполняется равенство Если ряд интегрируется на отрезке [0; x], то справедлива формула:

Пример Показать, что

Решение. Рассмотрим сначала следующий степенной ряд: Данный ряд является геометрической прогрессией со знаменателем x. Поэтому, он сходится при |x| < 1. Его сумма равна . Подставляя − x вместо x, получаем Таким образом,

Несобственные интегралы с бесконечными пределами

Если положить промежуток интегрирования бесконечным, то приведенное выше определение определенного интеграла теряет смысл, например, потому что невозможно осуществить условия n®¥l®0 для бесконечного промежутка. Для такого интеграла требуется специальное определение.

Пусть функция y = f(x) определена и непрерывна на полубесконечном промежутке [a;¥), тогда несобственным интегралом с бесконечным пределом  называется , если предел существует. Если этот предел не существует, то не существует и несобственный интеграл. В этом случае принято говорить, что несобственный интеграл расходится. При существовании предела говорят, что несобственный интеграл сходится.

Аналогично

  и .

Примеры: 1. . Очевидно: , откуда следует

.

2. ; этот предел не существует, следовательно, не существует или расходится интеграл I.

3. ; здесь предел также не существует, и интеграл расходится.

Дополнительная литература. 7. Ефимов А.В. , Демидович Б.П. (ред.) Сборник задач по математике для ВТУЗов. Части 1-2. - М., Наука, 1986. 8. Пискунов Н. С. Дифференциальное и интегральное исчисление для ВТУЗов. Т. 1-2. - М., Наука, 1985. 9. Кудрявцев В. А., Демидович Б. П. Краткий курс высшей математики. - М., Наука, 2005. 10. Гнеденко Б.В. Курс теории вероятностей. - М., Наука, 1988.
Интегрирование рациональных выражений тригонометрических функций