Типовой расчет по математике Физические приложения криволинейных интегралов Вычисление площадей фигур при параметрическом задании границы Физические приложения поверхностных интегралов Теорема Стокса

Типовой по математике примеры решения задач курсового задания

Дифференцирование и интегрирование степенных рядов

Пример Найти представление в виде степенного ряда функции .

Решение. Выше в примере 1 мы получили разложение Интегрируя это ряд почленно на отрезке [0; x], находим

Пример Разложить в степенной ряд интеграл .

Решение. В предыдущем примере было найдено разложение логарифмической функции в ряд в виде Отсюда следует, что Интегрируя этот ряд почленно на отрезке [0; x], получаем

Интегрирование по частям.

 Способ основан на известной формуле производной произведения:

(uv)¢ = u¢v + v¢u

где u и v – некоторые функции от х.

В дифференциальной форме: d(uv) = udv + vdu

Проинтегрировав, получаем: , а в соответствии с приведенными выше свойствами неопределенного интеграла:

 или ;

  Получили формулу интегрирования по частям, которая позволяет находить интегралы многих элементарных функций.

Функция нескольких переменных

Основные понятия

Пусть имеется n+1 переменная x1, x2, ..., xn, y, которые связаны между собой так, что каждому набору числовых значений переменных x1, x2, ..., xn соответствует единственное значение переменной y. Тогда говорят, что задана функция f от n переменных. Число y, поставленное в соответствие набору x1, x2, ..., xn называется значением функции f в точке (x1, x2, ..., xn), что записывается в виде формулы y = f(x1,x2,..., xn) или y =y(x1,x2,..., xn).

Переменные x1, x2, ..., xn являются аргументами этой функции, а переменная y ‑ функцией от n переменных.

Далее будем говорить лишь о функции двух переменных. Для функций большего числа переменных все факты, о которых будет идти речь, или аналогичны или сохраняются без всякого изменения. Аргументы функции двух переменных будем обозначать как правило x и y, а значение функции  z.

Будем говорить, что задана функция двух переменных, если любой паре чисел (x,y) из некоторого множества D упорядоченных пар чисел поставлено в соответствие единственное число, которое обозначается f(x,y) и называется значением функции f в точке (x,y).

Дополнительная литература. 7. Ефимов А.В. , Демидович Б.П. (ред.) Сборник задач по математике для ВТУЗов. Части 1-2. - М., Наука, 1986. 8. Пискунов Н. С. Дифференциальное и интегральное исчисление для ВТУЗов. Т. 1-2. - М., Наука, 1985. 9. Кудрявцев В. А., Демидович Б. П. Краткий курс высшей математики. - М., Наука, 2005. 10. Гнеденко Б.В. Курс теории вероятностей. - М., Наука, 1988.
Интегрирование рациональных выражений тригонометрических функций