Типовой расчет по математике Физические приложения криволинейных интегралов Вычисление площадей фигур при параметрическом задании границы Физические приложения поверхностных интегралов Теорема Стокса

Типовой по математике примеры решения задач курсового задания

Пример

Найти производную функции

Решение:

Это простейший пример, пожалуйста, найдите его в таблице производных элементарных функций. Теперь посмотрим на решение и проанализируем, что же произошло? А произошла следующая вещь: у нас была функция , которая в результате решения превратилась в функцию .

Говоря совсем просто, для того чтобы найти производную функции, нужно по определенным правилам превратить её в другую функцию. Посмотрите еще раз на таблицу производных – там функции превращаются в другие функции. Единственным исключением является экспоненциальная функция , которая превращается сама в себя. Операция нахождения производной называется дифференцированием.

Обозначения: Производную обозначают  или

Вернемся к нашей таблице производных. Из данной таблицы желательно запомнить наизусть: правила дифференцирования и производные некоторых элементарных функций, особенно:

производную константы:
, где  – постоянное число;

производную степенной функции:
,  в частности: , , .

Зачем запоминать? Данные знания являются элементарными знаниями о производных. И если Вы не сможете ответить преподавателю на вопрос «Чему равна производная числа?», то учеба в ВУЗе может для Вас закончиться (лично знаком с двумя реальными случаями из жизни). Кроме того, это наиболее распространенные формулы, которыми приходится пользоваться практически каждый раз, когда мы сталкиваемся с  производными.

В реальности простые табличные примеры – редкость, обычно при нахождении производных сначала используются правила дифференцирования, а затем – таблица производных элементарных функций.

В этой связи переходим к рассмотрению правил дифференцирования:


1) Постоянное число можно (и нужно) вынести за знак производной

, где  – постоянное число (константа)

Одним из подходов к исследованию функций двух переменных является изучение поведения функции в точке, то есть определение направлений, в которых функция убывает или возрастает, и определение скорости возрастания или убывания.

Можно использовать другой подход. Пусть имеется функция z = f(x,y) c графиком, представляющим собой некоторую поверхность.

Рассмотрим сечение графика функции плоскостью z=C (эта плоскость параллельна плоскости XOY и пересекает ось Z в точке z=C ). Спроектируем линию пересечения этой плоскости с поверхностью z = f(x,y) на плоскость XOY и получим так называемую линию уровня C функции z = f(x,y). Линия уровня представляет собой множество всех точек в плоскости XOY, для которых выполняется равенство f(x,y) = C. Придавая различные значения параметру C, можно получить множество линий уровня функции f(x,y). Если для каждой линии уровня указать соответствующее ей значение C, то получится топографическая карта поверхности, представляющей собой график функции.

В микроэкономике, в предположении что потребитель приобретает лишь два вида товаров: A и B, вводится понятие общей полезности TU, как функции двух аргументов: Q1 и Q2 – количеств потребленных товаров A и B, соответственно:

 TU = TU(Q1,Q2). (1)

Очевидно, что все линии уровня функции TU(Q1,Q2) составляют семейство кривых безразличия (Курс экономической теории. Под общей редакцией проф. Чепурина М.Н. 1995, стр. 125).

Пусть в плоскости XOY заданы две точки: M0(x0,y0) и M1(x1,y1). Расстояние r между этими точками рассчитывается по формуле

 . (2)

Пусть d  ‑ некоторое положительное число. d-окрестностью Vd точки M0(x0,y0) называется множество всех точек, координаты x,y которых удовлетворяют неравенствам

 .

Очевидно, что d-окрестность точки M0(x0,y0) представляет собой круг радиуса d  с выколотым центром.

Точка M0(x0,y0) называется точкой минимума функции z = f(x,y), если существует такое положительное число d , что из условия M(x,y) Î Vd (x0,y0) следует f(x,y) > f(x0,y0).

Точка M0(x0,y0) называется точкой максимума функции z = f(x,y), если существует такое положительное число d , что из условия M(x,y) Î Vd (x0,y0) следует: f(x,y) < f(x0,y0).

Дополнительная литература. 7. Ефимов А.В. , Демидович Б.П. (ред.) Сборник задач по математике для ВТУЗов. Части 1-2. - М., Наука, 1986. 8. Пискунов Н. С. Дифференциальное и интегральное исчисление для ВТУЗов. Т. 1-2. - М., Наука, 1985. 9. Кудрявцев В. А., Демидович Б. П. Краткий курс высшей математики. - М., Наука, 2005. 10. Гнеденко Б.В. Курс теории вероятностей. - М., Наука, 1988.
Интегрирование рациональных выражений тригонометрических функций