Типовой расчет по математике Физические приложения криволинейных интегралов Вычисление площадей фигур при параметрическом задании границы Физические приложения поверхностных интегралов Теорема Стокса

Типовой по математике примеры решения задач курсового задания

Производная частного функций

Пример

Найти производную функции

Чего здесь только нет – сумма, разность, произведение, дробь…. С чего бы начать?! Есть сомнения, нет сомнений, но, В ЛЮБОМ СЛУЧАЕ для начала рисуем скобочки и справа вверху ставим штрих:

Теперь смотрим на выражение в скобках, как бы его упростить? В данном случае замечаем множитель, который согласно первому правилу целесообразно вынести за знак производной:

Заодно избавляемся от скобок в числителе, которые теперь не нужны.
Вообще говоря, постоянные множители при нахождении производной можно и не выносить, но в этом случае они будут «путаться под ногами», что загромождает и затрудняет решение.

Смотрим на наше выражение в скобках. У нас есть сложение, вычитание и деление. Со школы мы помним, что деление выполняется в первую очередь. И здесь – сначала применяем правило дифференцирования частного:

Таким образом, наша страшная производная свелась к производным двух простых выражений. Применяем первое и второе правило, здесь это сделаем устно, надеюсь, Вы уже немного освоились в производных:

На практике обычно (но не всегда) ответ упрощают «школьными» методами:

Определенный интеграл

Пусть на промежутке [a;b] задана функция f(x). Будем считать функцию непрерывной, хотя это не обязательно. Выберем на промежутке [a;b] произвольные числа x1, x2, x3, ¼, xn-1, удовлетворяющие условию:
a< x1,< x2<¼< xn-1,<b. Эти числа разбивают промежуток [a;b] на n более мелких промежутков: [a;x1], [x1;x2], ¼ [xn-1;b]. На каждом из этих промежутков выберем произвольно по одной точке: c1Î[a;x1], c2Î[x1;x2], ¼ cnÎ[xn-1;b].

Введем обозначения: Dx1 = x1 – a; Dx2 = x2 – x1; ¼ Dxn = b – xn-1.

Составим сумму:

  .

Она называется интегральной суммой функции f(x) по промежутку [a;b]. Очевидно, что интегральная сумма зависит от способа разбиения промежутка и от выбора точек ci.

Каждое слагаемое интеграль­ной суммы представляет собой площадь прямоугольника, покрытого штриховкой на рисунке 1.

Введем обозначение: l = max(Dxi), i = 1, 2, ¼ n.. Величину l иногда называют параметром разбиения.

Рассмотрим процесс, при котором число точек разбиения неограниченно возрастает таким образом, что величина l стремится к нулю. Определенным интегралом

 

от функции  по промежутку [a;b] называется предел, к которому стремится интегральная сумма при этом процессе, если предел существует:

 .

Если такой предел существует, то он не зависит от первоначального разбиения промежутка [a;b] и выбора точек ci.

Число a называется нижним пределом интегрирования, а число b ¾ верхним пределом интегрирования.

Дополнительная литература. 7. Ефимов А.В. , Демидович Б.П. (ред.) Сборник задач по математике для ВТУЗов. Части 1-2. - М., Наука, 1986. 8. Пискунов Н. С. Дифференциальное и интегральное исчисление для ВТУЗов. Т. 1-2. - М., Наука, 1985. 9. Кудрявцев В. А., Демидович Б. П. Краткий курс высшей математики. - М., Наука, 2005. 10. Гнеденко Б.В. Курс теории вероятностей. - М., Наука, 1988.
Интегрирование рациональных выражений тригонометрических функций