Типовой расчет по математике Физические приложения криволинейных интегралов Вычисление площадей фигур при параметрическом задании границы Физические приложения поверхностных интегралов Теорема Стокса

Типовой по математике примеры решения задач курсового задания

Связь между дифференцируемостью и непрерывностью функции.

Докажем теорему, устанавливающую связь между дифференцируемостью и непрерывностью функции.

Теорема 7.1. Если функция y=f(x) дифференцируема в произвольной точке x0, то она непрерывна в этой точке.

Доказательство. Пусть функция y=f(x) дифференцируема в произвольной точке x0, т.е. имеет в этой точке производную (x0). Запишем приращение функции ∆y точке x0:

∆y =(x0) ∆ x +∆ x, где →0 при ∆ x→0 (см. доказательство теоремы 6.1).

Пусть теперь ∆ x→0. Тогда, очевидно, и ∆y→0.  Но это и означает, что функция y=f(x) непрерывна в точке x0. Теорема доказана.

Утверждение, обратное этой теореме, неверно: из непрерывности функции в данной точке не вытекает её дифференцируемость в этой точке. Существуют функции, непрерывные в некоторой точке, но не имеющие в этой точке производной. Примером такой функции служит функция

  y==

(см. рис.4).

 

Эта функция непрерывна в точке x = 0, но не дифференцируема в ней. Действительно, приращение этой функции в точке x = 0 есть

 ∆y = f(0+∆ x) ─ f(0) = f(∆ x) = ,

  ==,

т.е. в любой сколь угодно малой окрестности значения   отношение  принимает два различных значения: 1 и ─1.  Это означает, что предел  не существует, т.е. функция y= не имеет производной в точке x = 0, а, следовательно, график функции не имеет касательной в точке O(0;0) (поскольку угловой коэффициент касательной должен быть равен производной, но производной не существует).

Метод наименьших квадратов

Пусть проводится n однородных испытаний или экспериментов, и результатом каждого испытания является пара чисел – значений некоторых переменных x и y. Испытание с номером i приводит к числам xi, yi. В качестве испытания можно, например, рассматривать выбор определенного предприятия в данной отрасли промышленности, величиной x считать объем производства продукции (например в миллионах рублей), величиной y – объем экспорта этого вида продукции (в миллионах рублей), и обследовать n предприятий отрасли.

Итогом этих испытаний является таблица:

. . .

. . .

где каждому числу xi (величину  рассматриваем как независимый показатель или фактор) поставлено в соответствие число  (величину  рассматриваем как зависимый показатель – результат).

В качестве значений  часто рассматриваются моменты времени: t1, t2, ..., tn, взятые через равные промежутки. Тогда таблица

. . .

. . .

называется временным рядом.

Нас интересует вопрос, как найти приближенную формулу для функции y = f(x), которая “наилучшим образом” описывала бы данные таблицы.

Пусть точки с координатами (xi,yi) группируются на плоскости вдоль некоторой прямой. Задача заключается в том, чтобы найти параметры a0 и a1 этой прямой:

 y = a0 + a1x, (1)

причем это нужно сделать так, чтобы она лучше любой другой прямой соответствовала расположению на плоскости экспериментальных точек (xi, yi).

Признаком наилучшей прямой считается минимум суммы квадратов отклонений фактических значений y, полученных из таблицы, от вычисленных по формуле (1). Эта сумма квадратов рассчитывается по формуле

S2 = (y1 – (a0 + a1x1))2 + (y2 – (a0 + a1x2))2 +...+ (yn – (a0 + a1xn))2 =

  .

Обратим внимание на то, что все xi и yi — известные из таблицы числа, а S2 есть функция двух переменных a0 и a1.

 S2 = S2(a0,a1)


Можно показать, что график функции S2 выглядит примерно так, как изображено на рисунке. Единственная точка, в которой обе частные производ­ные   и  равны нулю, является точкой минимума.

Отсюда следует, что точку минимума можно искать, используя лишь необходимые условия экстремума:

  , (2)

.  (3)

На самом деле для фунуции S2 = S2(a0,a1) достаточно легко проверить выполнение достаточных условия экстремума, тогда не нужно обращаться к графику функции. Проверку выполнения достаточных условий предоставляем читателю сделать самому.

Уравнения (2) и (3) можно преобразовать:

 . (4)

Получилась так называемая система нормальных уравнений относительно неизвестных величин a0 и a1.

Рекомендуемая литература: " Основная литература. 1. Баврин И.И. Курс высшей математики, М., 1992 2. Шипачев В.С. Основы высшей математики, М., 1989 3. Шипачев В.С. Высшая математика. М., 1990 4. Давыдов Н.А., Коровкин П.П., Никольский В.Н. Сборник задач по математическому анализу. М., 1973 5. Берман Г.Н. Сборник задач по курсу математического анализа. М., 1964 6. Виленкин Н.Я., Бохан К.А., Марон И.А., Матвеев И.В., Смолянский М.Л., Цветков А.Т. Задачник по курсу математического анализа, часть 1 и часть 2, М., 1971 7. Матвеев Н.М. Дифференциальные уравнения. М., 1988
Интегрирование рациональных выражений тригонометрических функций