Типовой расчет по математике Физические приложения криволинейных интегралов Вычисление площадей фигур при параметрическом задании границы Физические приложения поверхностных интегралов Теорема Стокса

Типовой по математике примеры решения задач курсового задания

Производная обратной функции.

Справедлива следующая теорема.  Пусть функция y=f(x) строго монотонна (т.е. является либо возрастающей, либо убывающей) и непрерывна на интервале (a;b) и в точке x0 из этого интервала имеет отличную от нуля производную (x0). Тогда на множестве значений этой функции, соответствующем интервалу (a;b), определена непрерывная обратная функция x=φ(y), которая в точке y0= f(x0) имеет производную  , причём .

Пример. Функция y = sin x удовлетворяет условиям последней теоремы на интервале  и всюду на этом интервале имеет отличную от нуля производную:  . Поэтому на соответствующем интервале значений этой функции () определена и дифференцируема обратная функция

  x = arcsin y, причём .

Здесь перед корнем взят знак плюс, так как на интервале  функция  положительна. Итак, , или, если аргумент y обозначить

 через  x, .

Приведем примеры вычисления частных производных. Как говорилось выше, для вычисления частной производной по x функции z = f(x,y) нужно положить переменную y равной константе, а при нахождении частной производной по y нужно считать константой переменную x.

Примеры. 1. .

2.

Если частные производные функции z = f(x,y) существуют на некотором множестве, а точка, в которой вычисляются частные производные несущественна, то пользуются более короткими обозначениями:

 .

Сами частные производные могут являться функциями от нескольких переменных на некотором множестве. У этих функций тоже могут существовать частные производные по x и по y. Они называются вторыми частными производными или частными производными второго порядка и обозначаются zxx¢¢, zyy¢¢, zxy¢¢ или . Согласно определению ; . Последняя частная производная второго порядка называется смешанной. Смешанная частная производная второго порядка, вообще говоря, зависит от того, в какой последовательности берутся переменные, по которым вычисляется производная. Так, производная zxy¢¢ = (zx¢ )y¢ может не быть равной zyx¢¢ = (zy¢ )x¢. Однако существует теорема, утверждающая, что если смешанные частные производные второго порядка непрерывны, то они не зависят от того, в какой последовательности вычислялись частные производные по x и по y. (Рекомендуем читателю самому убедиться в справедливости этой теоремы для функций, рассмотренных в приведенных выше примерах 1 и 2.)

Отметим очень важное отличие функции двух переменных от функции одной переменной. Из существования первых частных производных в точке не следует непрерывность функции в этой точке. Рассмотрим, например, функцию

 .

График этой функции во всех точках, не принадлежащих осям координат OX и OY, представляет собой плоскость, параллельную плоскости XOY, поднятую на 1. Сами эти оси координат также принадлежат графику рассматриваемой функции. Очевидно, что в точке (0,0) функция имеет частные производные по обоим аргументам, обе равные нулю. Очевидно также, что в любой окрестности точки (0,0) можно найти точку M такую, что f(M) = 1, в то время как f(0, 0) = 0. Это означает существование разрыва функции в точке (0,0). (Пример взят из книги О.С.Ивашева-Мусатова “Начала математического анализа”).

Методическое обеспечение. 1. Зайцев М.В., Лавриненко Т.А. Высшая математика. Сборник задач. Ч. 1. - М., РГТЭУ, 2007. 2. Зайцев М.В., Лавриненко Т.А., Туганбаев А.А. Высшая математика. Сбор-ник задач. Ч. 2. - М., РГТЭУ, 2007. 3. Мушруб В.А., Чубарова Е.И.. . Контрольные задания по высшей матема-тике для студентов заочной формы обучения (первый семестр) - М, РГТЭУ, 2007.
Интегрирование рациональных выражений тригонометрических функций