Типовой расчет по математике Физические приложения криволинейных интегралов Вычисление площадей фигур при параметрическом задании границы Физические приложения поверхностных интегралов Теорема Стокса

Типовой по математике примеры решения задач курсового задания

Логарифмическое дифференцирование

Пусть функция  дифференцируема в точке x и принимает в этой точке положительное значение. Тогда в окрестности этой точки существует функция   Эту функцию можно рассматривать как сложную функцию аргумента x с промежуточным аргументом y. Продифференцируем эту функцию:

.  Из этого соотношения можно выразить производную . Такая операция нахождения производной после предварительного логарифмирования называется логарифмическим дифференцированием. Существуют функции, производную которых можно найти только таким способом. К числу этих функций относится степенно-показательная функция , где  и  – дифференцируемые функции аргумента x. В качестве примера найдём производную этой функции с помощью логарифмического дифференцирования.

Прологарифмируем эту функцию: .

Продифференцируем обе части полученного равенства:  , отсюда (т.к. )

.

Раскрыв скобки, получим окончательную формулу

  (13.1)

Рассмотрим пример конкретной функции.

Пример. Найти производную функции .

Решение. Можно сразу воспользоваться формулой (13.1), но можно выполнить логарифмическое дифференцирование и непосредственно:

,

.

Бывают случаи, когда применение логарифмического дифференцирования не необходимо, но целесообразно. Пусть, например, . Конечно, в этом случае можно непосредственно воспользоваться правилами вычисления производной, но логарифмическое дифференцирование упрощает выкладки:

,

,

.

Рассмотрим теперь линейные дифференциальные уравнения первого порядка с переменными коэффициентами. Выпишем такое уравнение в общем виде:

 у¢ + a(x)y = b(x).  (9)

Здесь a(x) ‑ некоторая функция аргумента x. Как мы это делали раньше, вначале будем искать решение однородного уравнения, положив функцию b(x) в правой части (9) равной нулю. Представив уравнение у¢ + a(x)y = 0 в виде

  ,

после интегрирования получаем

 

или

 . (10)

Здесь A ‑ неопределенная константа, которую можно найти из начального условия y(0) = 0.

Пример. Решить уравнение y’ + 2xy = 0 при начальном условии y(0) = 3.

В этом случае

a(x) = 2x,

и начальное условие определяет A = 3. Искомое решение имеет вид

 .

Перейдем к решению неоднородного линейного дифференциального уравнения первого порядка с переменными коэффициентами. Положим в формуле (10) A = A(x), то есть будем считать множитель A некоторой функцией от x. Этот метод называется методом вариации произвольной постоянной, и с его помощью мы попытаемся решить уравнение (9) при условии, что b(x) есть некоторая функция, не равная тождественно нулю. Из формулы (10) получаем:

.

После подстановки этих выражений уравнение (9) принимает вид

,

откуда следует уравнение относительно функции :

 ,

с решением

 .

Подставив это выражение в (10), получим общее решение уравнения (9):

 . (11)

Методическое обеспечение. 1. Зайцев М.В., Лавриненко Т.А. Высшая математика. Сборник задач. Ч. 1. - М., РГТЭУ, 2007. 2. Зайцев М.В., Лавриненко Т.А., Туганбаев А.А. Высшая математика. Сбор-ник задач. Ч. 2. - М., РГТЭУ, 2007. 3. Мушруб В.А., Чубарова Е.И.. . Контрольные задания по высшей матема-тике для студентов заочной формы обучения (первый семестр) - М, РГТЭУ, 2007.
Интегрирование рациональных выражений тригонометрических функций