Типовой расчет по математике Физические приложения криволинейных интегралов Вычисление площадей фигур при параметрическом задании границы Физические приложения поверхностных интегралов Теорема Стокса

Типовой по математике примеры решения задач курсового задания

Свойства дифференцируемых функций

Возрастание и убывание функции в точке и на интервале

Дадим определение возрастания и убывания функции в точке. Мы будем говорить, что функция y=f(x) возрастает (убывает) в точке c, если найдётся такая окрестность точки c, в пределах которой при  а при 

(при   а при ).

Напомним определения монотонных и строго монотонных функций на интервале.

Функция называется неубывающей (невозрастающей) на интервале, если для любых x1 и x2 из этого интервала, удовлетворяющих условию x1< x2, справедливо неравенство

  (  ). Неубывающие и невозрастающие функции называются монотонными.

Функция называется возрастающей (убывающей) на интервале, если для любых x1 и x2 из этого интервала, удовлетворяющих условию x1< x2, справедливо неравенство

  (  ). Возрастающие и убывающие функции называются строго монотонными.

Докажем теорему, устанавливающую достаточные условия возрастания (убывания) функции.

Теорема 16.1. Если функция f(x)  дифференцируема в точке c и  (  ), то эта функция возрастает (убывает) в точке  c.

Доказательство. Рассмотрим случай . Из определения производной следует, что . Поскольку , то (по теореме о сохранении знака функции, имеющей предел) найдётся такая окрестность точки c, в пределах которой отношение   остаётся положительным. Но это значит, что в пределах данной окрестности при  а при , т.е. функция f(x) возрастает в точке c. Аналогично доказывается, что при  функция f(x) убывает в точке c.

Теорема доказана.

Методическое обеспечение. 1. Зайцев М.В., Лавриненко Т.А. Высшая математика. Сборник задач. Ч. 1. - М., РГТЭУ, 2007. 2. Зайцев М.В., Лавриненко Т.А., Туганбаев А.А. Высшая математика. Сбор-ник задач. Ч. 2. - М., РГТЭУ, 2007. 3. Мушруб В.А., Чубарова Е.И.. . Контрольные задания по высшей матема-тике для студентов заочной формы обучения (первый семестр) - М, РГТЭУ, 2007.
Интегрирование рациональных выражений тригонометрических функций