Типовой расчет по математике Физические приложения криволинейных интегралов Вычисление площадей фигур при параметрическом задании границы Физические приложения поверхностных интегралов Теорема Стокса

Типовой по математике примеры решения задач курсового задания

Исследование функций с помощью производных

Условия монотонности функции на интервале

Рассмотрим сначала достаточные условия строгой монотонности функции на интервале.

Теорема 22.1. Для того чтобы дифференцируемая на интервале (a;b) функция  возрастала (убывала) на этом интервале достаточно, чтобы производная  была положительной (отрицательной) всюду на этом интервале.

Доказательство. Рассмотрим случай, когда . Пусть x1 и x2 - любые две точки интервала (a;b), удовлетворяющие условию . На отрезке  функция  дифференцируема, а, следовательно, непрерывна. Поэтому к ней можно применить формулу Лагранжа:

 ,

где .

По условию . Поэтому  или , т.е. функция  возрастает на интервале (a;b). Случай, когда , рассматривается аналогично. Система неравенств с одной переменной Говорят, что несколько неравенств образуют систему , если нужно найти все общие решения данных неравенств. Решением системы неравенств называется число, которое при его подстановке в систему обращает каждое неравенство в верное числовое неравенство. Традиционно неравенства системы объединяются фигурной скобкой.

Теорема доказана.

Из последней теоремы следует, что отличие от нуля производной является достаточным условием строгой монотонности функции. Однако это условие не является необходимым. Так, например, функция  возрастает на любом интервале действительной оси, но при x=0 производная этой функции обращается в нуль (рис. 6). Следующая теорема устанавливает необходимое и достаточное условие монотонности функции.

Теорема 22.2. Для того чтобы дифференцируемая на интервале (a;b) функция   не убывала (не возрастала) на этом интервале, необходимо и достаточно, чтобы производная этой функции была неотрицательной (неположительной) всюду на этом интервале.

Доказательство. 1) Докажем достаточность. Пусть . Рассмотрим любые две точки x1 и  x2 интервала (a;b), удовлетворяющие условию . Повторяя рассуждения из доказательства предыдущей теоремы, получим:

 ,

где .

Так как по условию , то , или , т.е. функция  не убывает (не возрастает) на интервале (a;b).

2) Докажем необходимость. Пусть функция  дифференцируема и не убывает (не возрастает) на интервале (a;b). Так как эта функция не убывает (не возрастает) на интервале (a;b), то она не может убывать (возрастать) ни в одной точке интервала (a;b). Поэтому, как следует из теоремы 16.1, производная  ни в одной точке интервала (a;b) не может быть отрицательной (положительной).

Теорема доказана.

Упражнения

1. Решить дифференциальные уравнения

1)

;

2)

;

3)

;

4)

;

5)

;

6)

;

7)

;

8)

;

9)

;

10)

.

11)

;

12)

;

13)

;

14)

;

15)

;

16)

;

1. Ильин В.А., Позняк Э.Г. Основы математического анализа. М.: Наука,1982, ч.1; 1983, ч.2. 2. Ильин В.А., Садовничий В.А., Сендов Бл.Х. Математический анализ. Начальный курс. Под ред. А.Н.Тихонова. М.: Изд во МГУ, 1985. 662 с. 3. Задачник по курсу математического анализа под ред. Н.Я.Виленкина. М.:Просвещение,1971, ч.1 2. 4. Фихтенгольц Г.М. Основы математического анализа. М.: Наука,1967, т.1 2. 5. Никольский С.М. Курс математического анализа. М.: Наука,1973, т.1 2.
Интегрирование рациональных выражений тригонометрических функций